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The recommendation to limit dietary saturated fatty acid (SFA) intake has persisted despite mounting evidence to the

contrary. Most recent meta-analyses of randomized trials and observational studies found no beneficial effects of

reducing SFA intake on cardiovascular disease (CVD) and total mortality, and instead found protective effects against

stroke. Although SFAs increase low-density lipoprotein (LDL) cholesterol, in most individuals, this is not due to increasing

levels of small, dense LDL particles, but rather larger LDL particles, which are much less strongly related to CVD risk. It is

also apparent that the health effects of foods cannot be predicted by their content in any nutrient group without

considering the overall macronutrient distribution. Whole-fat dairy, unprocessed meat, and dark chocolate are SFA-rich

foods with a complex matrix that are not associated with increased risk of CVD. The totality of available evidence

does not support further limiting the intake of such foods. (J Am Coll Cardiol 2020;76:844–57) © 2020 The Authors.

Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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ABBR E V I A T I ON S

AND ACRONYM S

apo = apolipoprotein

APOE = apolipoprotein E

CHD = coronary heart disease

CVD = cardiovascular disease

HDL = high-density

lipoprotein

LDL = low-density lipoprotein

MCPD =

monochloropropandiol

SFA = saturated fatty acid
L owering the consumption of saturated fat
has been a central theme of U.S. dietary
goals and recommendations since the late

1970s (1). Since 1980, it has been recommended
that saturated fatty acid (SFA) intake be limited
to <10% of total calories as a means of reducing
risk for cardiovascular disease (CVD) (1). In 2018,
the U.S. Departments of Agriculture and Health
and Human Services asked for public comments
in response to the following question: “What is
the relationship between saturated fat consump-
tion (types and amounts) and risk of CVD in
adults?” (2). This review aims to address this
important question by examining available evi-
dence on the effects of saturated fats on health
outcomes, risk factors, and potential mechanisms
underlying cardiovascular and metabolic outcomes,
which will have implications for the 2020 Dietary
Guidelines for Americans.

The relationship between dietary SFAs and heart
disease has been studied in about 400,000 people
and summarized in a number of systematic reviews
of observational studies and randomized controlled
trials. Some meta-analyses find no evidence that
reduction in saturated fat consumption may reduce
CVD incidence or mortality (3–6), whereas others
report a significant—albeit mild—beneficial effect
(7,8). Therefore, the basis for consistently recom-
mending a diet low in saturated fat is unclear. The
purpose of this review is to critically evaluate the
health effects of dietary SFAs and to propose an
evidence-based recommendation for a healthy
intake of different SFA food sources.
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SFAs IN FOODS AND HETEROGENEITY

IN THEIR BIOLOGIC EFFECTS

SFAs comprise a heterogeneous group of fatty
acids that contain only carbon-to-carbon sin-
gle bonds (Table 1). SFAs differ on the basis of
their carbon chain length, and are categorized
as short-chain (4 to 6 carbon atoms), medium-
chain (8 to 12 carbon atoms), long-chain (14 to
20 carbon atoms), and very long-chain (22 or
more carbon atoms) fatty acids, although
these definitions are not standardized. The
melting point of individual SFAs increases

with increasing chain length. SFAs of $10 carbon
atoms are solid at room temperature (9). The primary
food contributors of individual SFAs in the diet also
differ by SFA chain length. For example, the major
food sources of short-chain SFAs are dairy fats, while
medium- and long-chain SFAs are predominantly
found in red meat, dairy fats, and plant oils (9,10).
Notably, food sources of SFAs contain different pro-
portions of various fatty acids (Figure 1) in addition to
other nutrients that, as described subsequently, can
substantially influence their observed physiological
and biologic effects (9,11,12).

SFAs are also classified on the basis of the presence
or absence of methyl branches on the carbon chain.
For example, fatty acids with no methyl branch (e.g.,
palmitic, stearic) are classified as straight-chain fatty
acids, while those with 1 or more methyl branches are
termed branched-chain fatty acids (e.g., iso-
pentadecanoic). Branched-chain SFAs are found pri-
marily in dairy, beef, and other ruminant-derived
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TABLE 1 Major Natu

Abbreviation
Com

System

4:0 B

6:0 Ca

8:0 Ca

10:0 C

12:0 L

14:0 M

15:0 Penta

16:0 Pa

17:0 Hepta

18:0 S

C15:0 and C17:0 are predom
fatty acids are influenced b

HIGHLIGHTS

� The U.S. Dietary Guidelines recommend
the restriction of SFA intake to <10% of
calories to reduce CVD.

� Different SFAs have different biologic
effects, which are further modified by the
food matrix and the carbohydrate con-
tent of the diet.

� Several foods relatively rich in SFAs, such
as whole-fat dairy, dark chocolate, and
unprocessed meat, are not associated
with increased CVD or diabetes risk.

� There is no robust evidence that current
population-wide arbitrary upper limits on
saturated fat consumption in the United
States will prevent CVD or reduce
mortality.
foods (13), and have similar physicochemical proper-
ties as unsaturated fatty acids, in particular lower
melting point (or more accurately, phase transition
temperature). In experimental animal studies,
branched-chain fatty acids alter the microbiota
composition in the direction of microorganisms that
use these fatty acids in cellular membranes (14), and
because they are normal constituents of the healthy
human infant gut (15), these fatty acids could play a
role in normal colonization.

Circulating SFAs can also be classified based on
their origin as exogenous or endogenous. Specifically,
circulating levels of even number–chain SFAs such as
myristic, palmitic, and stearic acid are influenced by
dietary intakes (i.e., exogenous sources). Still, they
are also endogenously synthesized via de novo
rally Occurring Saturated Fatty Acids

mon or
atic Name

Carbon
Chain Length Major Dietary Sources

utyric Short Dairy foods

proic Short Dairy foods

prylic Medium Dairy foods, coconut and palm kernel oils

apric Medium Dairy foods

auric Medium Coconut milk and oil

yristic Long Dairy foods

decanoic Long Red meat, dairy foods, oils

lmitic Long Red meat, dairy foods, palm oil

decanoic Long Red meat, dairy foods

tearic Long Dairy foods, meat, chocolate

inantly obtained from food sources, whereas circulating levels of all other saturated
y both dietary intake and endogenous metabolism.
lipogenesis, a process whereby excess carbohydrate
and protein are converted to fatty acids (16). Also, odd
number–chain SFAs such as pentadecanoic and hep-
tadecanoic acids are primarily synthesized by the
bacterial flora in the rumen, although animal studies
do suggest a potential role of endogenous synthesis
through elongation of propionic and heptanoic acids
(17). Circulating pentadecanoic and heptadecanoic
acid levels correlate with self-reported dairy food
intake and have thus been used as objective markers
of dairy fat consumption (18–24). Evidence from large
observational studies indicates different associations
for SFAs of varying physical, chemical, and metabolic
structures, thereby supporting divergent effects of
different SFAs on blood lipids, glucose-insulin ho-
meostasis, insulin resistance, and diabetes (25–27).

In discussions of foods, it is useful to distinguish
between “fat” and “fatty acids.” Saturated fats can be
defined as foods that are primarily lipids, and solid at
temperatures at which they are customarily stored
and consumed. Examples are butter and butterfat,
dairy-derived fats contained in cheese, animal fats
such as tallow and lard, and plant oils such as cocoa
butter (chocolate), coconut oil, and palm and palm
kernel oils. These fats are solid because they comprise
primarily SFAs, in which the term saturated desig-
nates a specific chemical structural property of fatty
acids, specifically a reduced ability to chemically
react with I2 or H2. The major SFAs in most natural
human diets are stearic, palmitic, myristic, and lauric
acids with linear chains of 18, 16, 14, and 12 carbon
atoms, respectively. Foods from which saturated fats
can be derived, such as full-fat dairy, yogurt, and
cheese, are usually said to contain saturated fats
although, in fact, they contain SFAs. SFAs are chem-
ically defined structures, whereas saturated fats are
complex chemical mixtures of all major SFAs in
differing proportions, along with many other fatty
acids (odd number–chain and branched-chain SFAs,
and unsaturated fatty acids with typically from 1 to 6
double bonds). Other components are present in
saturated fats that are not fatty acids at all (e.g.,
glycerol). The vast majority of human studies on
saturated fats have used foods containing SFAs and
have compared these with diets with liquid oils,
typically of vegetable origin. These, too, contain SFAs
but in lower proportions.

EVIDENCE ON THE HEALTH EFFECTS OF

SATURATED FAT

In the 1950s, with the increase in coronary heart
disease (CHD) in Western countries, research on
nutrition and health focused on a range of “diet-



FIGURE 1 Saturated Fatty Acid Profiles of Major Food Sources (i.e., Whole-Fat Cheese,

Whole-Fat Milk, and Red Meat)
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These data indicate that food sources of saturated fat contain different proportions of

short-, medium-, and long-chain saturated fatty acids; these fatty acids have diverse

physical and chemical characteristics, and differing effects on various blood lipids and

lipoproteins (9,11,12). Data from the U.S. Department of Agriculture, FoodData

Central (126).
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heart” hypotheses. These included the putative
harmful effects of dietary fats (particularly saturated
fat) and the lower risk associated with the Mediter
ranean diet to explain why individuals in the United
States, Northern Europe, and the United Kingdom
were more prone to CHD. In contrast, those in Euro
pean countries around the Mediterranean had a lowe
risk. These ideas were fueled by ecologic studies such
as the Seven Countries Study. In recent decades
however, diets have changed substantially in severa
regions of the world. For example, the very high
intake of saturated fat in Finland has decreased
considerably, with per capita butter consumption
decreasing from w16 kg/year in 1955 to w3 kg/year in
2005, and the percent energy from saturated fa
decreasing from w20% in 1982 to w12% in 2007 (28)
Therefore, the dietary guidelines that were developed
based on information from several decades ago may
no longer be applicable.

A few large and well-designed prospective cohor
studies, which used validated questionnaires to asses
diet and recorded endpoints in a systematic manner
were initiated recently. They demonstrated tha
replacement of fat with carbohydrate was no
associated with lower risk of CHD, and may even be
associated with increased total mortality (29–31)
Furthermore, a number of systematic reviews of cohor
studies have shown no significant association between
saturated fat intake and coronary artery
disease or mortality, and some even suggested a 
lower risk of stroke with higher consumption o
saturated fat (3,6,32,33). These studies were con
ducted predominantly in high-income countrie
(United States and Europe) but few were conducted in
other regions of the world, overall representing w80%
of the global population. Likewise, data from the Fatty
Acids and Outcomes Research Consortium consisting
of 15 prospective cohorts worldwide (33,083 adult
who were free of CVD) demonstrated that biomarker
of very long-chain SFA (20:0, 22:0, 24:0) were no
associated with total CHD (associa-tions for fatal and
nonfatal CHD were similar), and if anything, levels in
plasma or serum (but not phos-pholipids) may be
inversely associated with CHD (34).

Recently, in a large and the most diverse study
addressing this question, the PURE (Prospective Ur
ban Rural Epidemiological) study (35) in 135,000
people mostly without CVD from 18 countries on 5
continents (80% low- and middle-income countries)
increased consumption of all types of fat (saturated
monounsaturated, and polyunsaturated) was associ
ated with lower risk of death and had a neutral as
sociation with CVD. By contrast, a diet high in
carbohydrate was associated with higher risk of death
but not with risk of CVD. This study also demon-
strated that individuals in the quintile with the
highest saturated fat intake (about w14% of total
daily calories) had lower risk of stroke, consistent
with the results from meta-analyses of previous
cohort studies (36). Furthermore, in a newly pub-
lished study of 195,658 participants from the UK
Biobank who were followed up for 10.6 years, there
was no evidence that saturated fat intake was asso-
ciated with incident CVD. In contrast, the substitu-
tion of polyunsaturated for saturated fat was
associated with higher CVD risk. Although there was
also a positive relation of saturated fat intake with all-
cause mortality, this became significant only with
intakes well above average consumption (37).
Notably, the diet with the lowest hazard ratio for all-
cause mortality comprised high fiber (10 to 30 g/day),
protein (14% to 30%), and monounsaturated fat (10%
to 25%) intakes and moderate polyunsaturated fat
(5% to <7%) and starch (20% to <30%) intakes (37).



For dietary carbohydrate, higher consumption
(mainly from starchy carbohydrates and sugar) was
associated with a higher risk of CVD and mortality
(37). In the context of contemporary diets, therefore,
these observations would suggest there is little need
to further limit the intakes of total or saturated fat for
most populations. By contrast, restricting carbohy-
drate intake, particularly refined carbohydrates, may
be more relevant today for decreasing the risk of
mortality in some individuals (e.g., those with insulin
resistance and type 2 diabetes).

Most randomized trials of nutrient intake and
clinical events have been relatively small in size.
Those that comprise the basis of dietary recom-
mendations to limit dietary saturated fat were con-
ducted some 40 to 50 years ago (38), and have
important methodological flaws, as described further
subsequently. By far, the largest contemporary study
is the WHI (Women’s Health Initiative) trial in nearly
49,000 women, which demonstrated that risk for
heart attack and stroke was unaffected after 8 years
on a low-fat diet in which saturated fat provided
9.5% of total daily energy intake (39). The PRE-
DIMED (Prevención con Dieta Mediterránea) trial
compared a standard low-fat diet with a Mediterra-
nean diet supplemented with nuts or olive oil.
Despite an increase in total fat intake by 4.5% of
total energy (including slightly higher saturated fat
consumption), major cardiovascular events and
death were significantly reduced compared with the
control group (40). Furthermore, in the 6 most
recent systematic reviews and meta-analyses of
randomized trials (many of which were small and
conducted more than 40 years ago but still comprise
the core of current dietary recommendations), re-
sults showed that replacing saturated fat with poly-
unsaturated fat has no significant effect on coronary
outcomes (the primary outcome of these trials) or on
total mortality (5,7,41). Even if these analyses were
to be challenged, for example, based on the criteria
for study selection or other lines of evidence (42), an
important possibility to consider is that an appar-
ently lower risk of CVD with substitution of SFAs by
polyunsaturated fatty acids could be attributed to a
possible beneficial effect of polyunsaturated fatty
acids and not necessarily to an adverse effect of
SFAs.

There is, therefore, a large body of information that
raises questions regarding conventional beliefs about
SFAs and clinical outcomes. Taken together, the evi-
dence from both cohort studies and randomized trials
does not support the assertion that further restriction
of dietary saturated fat will reduce clinical events.
LOW-DENSITY LIPOPROTEIN CHOLESTEROL

AND OTHER BIOMARKERS FOR ASSESSING

THE EFFECTS OF DIETARY SATURATED FAT

ON CARDIOVASCULAR RISK

Plasma low-density lipoprotein (LDL) cholesterol
concentration has traditionally been used to assess
risk for CVD and to monitor the effects of lifestyle and
pharmacological interventions (43). However, there
are weaknesses in the argument that a reduction in
CVD risk with saturated fat restriction can be inferred
from the well-documented capacity of SFAs to in-
crease LDL cholesterol when substituted for carbo-
hydrate or cis-unsaturated fatty acids (12). First,
although it is evident that LDL particles play a causal
role in the development of CVD (44,45) and that, in
general, there is a relationship between lowering of
LDL cholesterol and CVD benefit (45), a diet-induced
reduction of LDL cholesterol cannot be inferred to
result in CVD benefit without having the means for a
comprehensive assessment of other biologic effects
that may accompany this reduction. In this regard, it
is notable that postmenopausal estrogen plus pro-
gestin therapy (46) and treatment with several cho-
lesteryl ester transport protein inhibitors (47) result
in no CVD benefit despite substantial LDL cholesterol
lowering. In contrast, Mediterranean-style dietary
interventions reduce CVD risk without significantly
reducing LDL cholesterol (48,49). Moreover, inhibi-
tion of sodium-glucose cotransporter type 2 reduces
CVD events despite an increase in LDL cholesterol
levels (50).

A second reason that a reduction in LDL cholesterol
induced by dietary saturated fat restriction cannot be
inferred to yield a proportional reduction in CVD risk
is the observation that the lower LDL cholesterol
concentration primarily reflects reduced levels of
large LDL particle subspecies (51). Large LDLs are
more cholesterol-enriched but have much weaker
associations with CVD risk than do smaller LDL par-
ticles (44,52), which are not reduced by saturated fat
restriction in the majority of individuals (51). More-
over, decreasing saturated fat intake also lowers the
levels of high-density lipoprotein (HDL) cholesterol,
and hence has a relatively small effect on the ratio of
total to HDL cholesterol (12), which is a robust marker
of CVD risk (53). Thus, the potential benefit of dietary
restriction of saturated fat could be substantially
overestimated by reliance on the change in LDL
cholesterol levels alone. This concern is highlighted
in several randomized trials in which changes in total
and LDL cholesterol did not inform the impact of
changes in dietary SFAs on CVD risk (5,39,40).



Insulin-resistant states like the metabolic syndrome,
pre-diabetes, and type 2 diabetes affect >100 million
people in the United States (54). Insulin resistance
manifests functionally as carbohydrate intolerance.
For example, insulin-resistant lean subjects demon-
strate impaired skeletal muscle glucose oxidation,
increased hepatic de novo lipogenesis, and athero-
genic dyslipidemia after a high-carbohydrate meal
(55). Therefore, an individual with insulin resistance
has a higher propensity to convert carbohydrate to
fat, which will further exacerbate the insulin-
resistant phenotype. In addition to standard risk
factors (e.g., high triglyceride and low HDL choles-
terol concentrations, increased central adiposity, hy-
pertension, hyperglycemia, hyperinsulinemia), this
phenotype also includes increased circulating levels
of SFAs and lipogenic fatty acids, such as palmitoleic
acid (C16:1).

It is important to distinguish between dietary
saturated fat and circulating SFAs. Whereas several
reports show no association between increased intake
of SFAs and risk for chronic disease (6,29), individuals
with higher circulating levels of even-chain SFAs
(particularly palmitate, C16:0) have increased risk of
developing metabolic syndrome (56), diabetes
(57–59), CVD (59), heart failure (60), and mortality
(61). Notably, however, the amount of circulating
SFAs in blood is not related to saturated fat intake
from the diet but instead tends to track more closely
with dietary carbohydrate intake. For example, an
increase in saturated fat consumption by 2- to 3-fold

Likewise, the PURE study reported that the observed 
hazard ratio for the association between saturated fat 
and CVD events does not fit a relation with plasma 
LDL cholesterol, but rather is related to the ratio of 
apolipoprotein B (apo B) to apo A1, which is a 
measure related to atherogenic particle concentration 
(apo B is found in LDL and very–low-density 
lipoprotein par-ticles, and apo A1 is found in HDL 
particles); in fact, this ratio was lower in those with 
higher saturated fat intake (35). For these reasons, 
dietary effects on CVD risk may not be reliably 
reflected by changes in LDL cholesterol levels, and 
therefore it is imperative to develop and implement 
more valid surrogate markers for assessing CVD risk 
and monitoring diet-induced effects in research and 
clinical practice.

MODULATION  OF  THE  HEALTH  EFFECTS  OF  
SATURATED  FAT  BY  DIETARY  
CARBOHYDRATE  INTAKE  AND

INSULIN  RESISTANCE
either has no effect or decreases serum levels of
SFAs in the context of lower carbohydrate intake
(62–65). Decreased accumulation of circulating SFAs
in response to diets lower in carbohydrate and higher
in saturated fat is partially mediated by lower pro-
duction (through de novo lipogenesis), but also
increased clearance. Low-carbohydrate diets consis-
tently increase rates of whole-body fat oxidation,
which includes the preferred use of SFAs for fuel.
Thus, the combination of greater fat oxidation and
attenuation of hepatic lipogenesis could explain why
a higher dietary saturated fat intake is associated with
lower circulating SFAs in the context of low carbo-
hydrate intake.

Although palmitic acid is the primary fatty acid
product of de novo lipogenesis, serum palmitoleic
acid (cis-C16:1n7), a product of stearoyl-CoA desatur-
ase-1 activity, is a better proxy of lipogenesis because
of its low content in the diet and the fact that it in-
creases proportionally more than any other fatty acid
when carbohydrate is converted to fat (66). Several
studies support a close link between increased di-
etary carbohydrate intake and increased palmitoleic
acid levels, an effect that is independent of changes
in body weight and saturated fat intake (62,63,65).
Beyond its importance as a surrogate for de novo
lipogenesis, palmitoleic acid levels in blood and adi-
pose tissue are consistently and strongly linked to
obesity and hypertriglyceridemia (67), hyperglycemia
and type 2 diabetes (59,68,69), heart failure (60,70),
and CVD mortality (61,70). Furthermore, in nondia-
betic men, higher proportions of palmitoleic acid in
erythrocyte membranes were significantly associated
with worsening of hyperglycemia (68) and develop-
ment of metabolic syndrome (56,71). In the ARIC
(Atherosclerosis Risk In Communities) study, the
highest quintile of plasma phospholipid palmitoleic
acid was associated with a 67% greater risk of incident
heart failure (60) and 52% greater risk of incident
ischemic stroke (72) compared with the lowest quin-
tile. Furthermore, in the Physician’s Health Study, an
increase in plasma palmitoleic acid concentration by 1
SD was associated with a 19% greater odds ratio for
coronary artery disease (73) and a 17% greater odds
ratio for congestive heart failure (70). Clearly, the
impact of dietary SFAs on health must consider the
important role of carbohydrate intake and the un-
derlying degree of insulin resistance, both of which
significantly affect how the body processes saturated
fat. This intertwining aspect of macronutrient physi-
ology and metabolism has been consistently over-
looked in previous dietary recommendations.



TAILORING DIETARY SATURATED FAT

INTAKE TO CARDIOMETABOLIC RISK

Despite many decades of nutrition research in
humans and animal models, the scientific community
has not yet reached a consensus on “the one diet”
(i.e., low-fat, Mediterranean) that achieves optimal
metabolic health for all. The highly heterogeneous
outcomes of dietary intervention studies suggest that
some individuals have better outcomes from specific
diets than do others. Therefore, the objective should
be to match each person to their individual best diet,
which is culturally appropriate (74). Conversely, as
discussed previously, the once apparently tight link
between dietary SFAs and CVD appears to be loos-
ening as a result of mounting evidence that casts
doubt on previously established beliefs. Part of the
debate relates to the role of variation in specific food
sources of SFAs, and part relates to interindividual
variation in the biologic and clinical effects of these
SFAs. Some research over the last 2 decades has
shifted toward the identification of genetic factors
underlying the interindividual differences in
response to different dietary fats. The information
emerging from these studies suggests that genetic
variants may modulate the relationship between di-
etary SFAs and CVD-related biomarkers (75). In some
cases, dietary SFAs enhance the association of genetic
variants predisposing to increased CVD risk. This has
been shown for the apo E (APOE) gene, one of the
most extensively researched loci in relation to CVD
risk. Specifically, carriers of the less common APOE4
allele have repeatedly shown greater fasting plasma
lipid responses to saturated fat in the diet than do
non-APOE4 carriers (76,77) and similar findings have
been reported in the postprandial state (78). These
gene by diet interactions have been demonstrated for
other CVD risk factors as well, such as obesity. For
example, by using a weighted genetic risk score
calculated on the basis of 63 obesity-associated vari-
ants in 2 populations, the GOLDN (Genetics of Lipid
Lowering Drugs and Diet Network) and the MESA
(Multi-Ethnic Study of Atherosclerosis), it was shown
that dietary SFA intake interacts with the genetic risk
score to modulate body mass index (79). In brief, the
association between high SFA intake and obesity was
apparent only in subjects in the upper tertile of the
genetic risk score (i.e., those with stronger genetic
pre-disposition to obesity may be more sensitive to
dietary SFAs) (79). In terms of single locus by diet
interactions, one of the most studied ones is the
APOA2. A putative functional variant -265T>C
(rs5082) within the apo A2 promoter gene has shown
consistent interactions with saturated fat intake to
influence the risk of obesity. Specifically, saturated
fat intake is associated with higher average body mass
index exclusively in subjects who are homozygotes
for the less common T allele but not in those who are
heterozygotes for the T allele or homozygotes for the
most common C allele (80,81). The potential mecha-
nism for this apo A2 by saturated fat interaction has
been elucidated recently (82). Nevertheless, based on
current evidence, and in the absence of randomized
dietary intervention studies, the effects of this and
other gene–diet interactions (79,83,84) cannot be
attributed specifically to SFAs; it is equally likely that
the observed effects are related to the overall influ-
ence of foods or dietary patterns containing the SFAs.
The current information suggests that genetic pre-
disposition modulates the association between satu-
rated fat intake and cardiovascular risk. It is this
segment of the population (the SFA-sensitive) in
which the reduction in SFA intake may be beneficial
and could therefore be recommended.

Obesity and type 2 diabetes are major contributors
to the risk of CVD, and recent evidence suggests that
the optimal diet for weight control and glycemic
control depends in part on the individual’s “carbo-
hydrate tolerance” (85), which in turn is determined
by insulin resistance and insulin secretion capacity.
Carbohydrate tolerance may also vary with level of
exercise or fitness of the individual. Whereas diets
lower in total and saturated fat may be optimal for
carbohydrate-tolerant (i.e., insulin-sensitive) in-
dividuals, a diet lower in carbohydrates and higher in
fiber and fat seems to be optimal for patients with
type 2 diabetes (86). In the United States, the preva-
lence of pre-diabetes among adults was 37% in 2012
and is projected to rise to 40% in 2030 (87), accom-
panied by slight increases in the prevalence of type 2
diabetes. This novel information emphasizes the
need for a more personalized and food-based
approach in recommending levels of total and satu-
rated fat in the diet.

FROM SINGLE NUTRIENTS TO WHOLE FOODS:

LESSONS FROM ANCESTRAL DIETS, FOOD

PROCESSING, AND THE FOOD MATRIX

The overall health effect of fats and oils depends on
the content of SFAs and unsaturated fatty acids but is
not merely the sum of the effects of the individual
lipid components. Rather, it depends on the inter-
acting effects from naturally occurring components
and from unhealthy compounds introduced by pro-
cessing. These compounds are often overlooked in
the assessment of health effects of oils and fats, and
the risk of this is illustrated by the “trans-fat” story.



 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

The substitution of traditional dairy fats with vege-
table oils has a long history, dating back at least to the
1870s U.S. legislation, and has driven the saturated
versus unsaturated fat debate (88). By the 1950s, the
major component of 20th-century vegetable oils,
dietary polyunsaturated linoleic acid, was widely
recognized to decrease plasma cholesterol concen-
trations, and hence surmised to have a more favor-
able effect on atherosclerosis than saturated fat,
which could raise cholesterol. However, despite its
high content of SFAs, dairy fat does not promote
atherogenesis (89). The ability of adult humans to
digest the sugar unique to milk, lactose, evolved
separately numerous times (90,91), demonstrating
unequivocally that the ancestors of many modern
humans required continuous dairy consumption for
survival to reproductive age. Bovine (92), goat (93),
and sheep (94) domestication started around the
same time, about 10,000 years ago, coinciding with
the emergence of lactase persistence (i.e., the ability
to digest lactose). The saturated fat of the meat of
these species was likely a major contributor to human
diets, along with fruit oils—where available—such as
olive, avocado, and palm, all low in polyunsaturated
fat, with the latter also being high in saturated fat.
Coconut fat would have been the only abundant lipid-
rich seed, and that too is highly saturated. Seed oil
consumption, which now dominates the food supply,
would have been negligible back then and until the
advent of industrialized fat extraction in recent cen-
turies. These historical facts demonstrate that satu-
rated fats were an abundant, key part of the ancient
human diet.

By the 1970s, many experimental studies in animal
models were conducted with dietary coconut oil of
unspecified origin, which reliably caused dramatic
increases in hepatic and blood cholesterol in rodents;
this was taken as evidence that dietary SFAs are
inherently atherogenic (95,96). However, coconut oils
of the era were usually highly processed and often
fully hydrogenated. Recent gentle preparation
methods yield “virgin” coconut oils (97) that do not
raise LDL cholesterol compared with customary diets
and have similar effects compared with olive oil in
humans (98). Studies in rodents demonstrated that
while highly processed (“refined-bleached-deo-
dorized”) coconut oil raises serum cholesterol, virgin
coconut oil does not (99,100).

In the last decade, the concept of process con-
taminants generated from high-temperature treat-
ment of oils in the presence of trace metals has come
to  the fore. The triglyceride derivatives
glycidyl and  monochloropropandiol (MCPD) esters
are common contaminants, well studied for their

carcinogenic
properties in rodents (101). Recently, the metabolic
effects of virgin coconut oil and of oil processing on
human liver cells were investigated. A method was
developed to enable cells to take up whole oil,
including process contaminants. Oil was passed
through successive stages of processing, starting
with: 1) virgin oil; which was then subjected to 2) free
fatty acid removal; 3) bleaching; and 4) deodoriza-
tion. With increasing processing, cellular cholesterol
increased, HMGCoA reductase expression increased
and the activity of the cholesterol oxidation enzyme
CYP7A1 decreased. A major chemical alteration in the
oil was the increase in both glycidyl and MCPD esters.
Remarkably, addition of either glycidol or MCPD to
virgin coconut oil partially recapitulated the effects
on cellular cholesterol metabolism (102). Experi-
mental rodent studies using oxidation-resistant
linoleic acid, di-deuterated in the bis allylic posi-
tion, support the hypothesis that oxidation products
and not specific fatty acids cause plaque formation in
transgenic mouse models (103).

Human studies that assume all foods high in
saturated fats are similarly atherogenic come, in
many cases, from an era prior to the recognition of
process contaminants. The American Heart Associa-
tion recently issued a Presidential Recommendation
to avoid saturated fats, based on studies conducted in
the 1960s and the 1970s (38). Three studies conducted
in Europe (Oslo, Norway; London, United Kingdom;
and Helsinki, Finland) (104–106) and 1 study con-
ducted in the United States (Los Angeles) (107)
comprised the core evidence chosen on the basis of
the quality of study design, execution, and adher-
ence. These studies were purported to have compared
high saturated with high polyunsaturated fat diets
over at least a 2-year period, and to have included
biomarkers of adherence and collection of CVD
events. Key quality parameters were that the diets
did not include trans unsaturated fats as a major
component and that the dietary intake of the com-
parison groups was controlled. However, careful in-
spection of the diets indicates that this was not the
case. First, partially hydrogenated fish oils were ma-
jor constituents of European (and Canadian) marga-
rines and shortenings of this era (88). Hydrogenated
fish oils are rich in a wide array of trans monoenes
and polyenes not present in partially hydrogenated
vegetable oils (108). The Oslo study, for instance,
explicitly estimated intake of partially hydrogenated
fish oil at 40 to 50 g/day (109). Second, the 3 European
studies all used customary diets as comparisons
(105–107,110), which were substituted for experi-
mental diets. One can thus infer that the European
diets are tests of polyunsaturated fats against trans-



CENTRAL ILLUSTRATION Shifting From Saturated Fatty Acid–Based to Food-Based Dietary Guidelines for
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Available evidence discussed in this paper supports the rationale for replacing dietary saturated fat targets with food-based guidelines for saturated fat intake.

CVD ¼ cardiovascular disease; SFA ¼ saturated fatty acid.
plus-saturated fats, which means that any effects
described cannot be assigned to saturated fats alone.
Dropping these 3 studies from a meta-analysis leaves
the U.S. trial, which did not find a significant differ-
ence between groups for its primary CVD outcome
(38). We consider this to be the proper interpretation
of these studies.

Taken together, these observations strongly sup-
port the conclusion that the healthfulness of fats is
not a simple function of their SFA content, but rather
is a result of the various components in the food,
often referred to as the “food matrix.” Although the
various SFAs have distinct metabolic roles (9,11,12),
ample evidence is available from research on specific
foods that other food components and the food
matrix likely dominate over saturated fat content, as
discussed in the following section. Recommendations
should, therefore, emphasize food-based strategies
that translate for the public into understandable,
consistent, and robust recommendations for healthy
dietary patterns.

HEALTH EFFECTS OF DIFFERING FOOD

SOURCES OF SATURATED FATTY ACIDS

YOGURT AND CHEESE. Dairy is the major source of
SFAs in most diets, and major dietary guidelines
recommend low-fat or fat-free versions of dairy
foods to limit SFA intake. However, food-based
meta-analyses consistently find that cheese and
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yogurt intakes are inversely associated with CVD risk
(11,111–113). Whole-fat dairy may also be protective
against type 2 diabetes (3,114,115). Using circulating
biomarkers of dairy intake (i.e., plasma levels of
C17:0), an inverse association with CHD was found
(116), whereas for other biomarkers (15:0 and 17:0, but
also the natural ruminant trans-16:1n7), a neutra
association was found with total mortality (11)
Moreover, a pooled individual-level analysis of nearly
65,000 participants across international co-horts
found that plasma and tissue levels of odd-chain SFAs
(15:0, 17:0) and natural ruminant trans fatty acids
(trans-16:1n7), all of which reflect dairy fat
consumption, were associated with lower risk of
diabetes (117). Cheeses and yogurts consist of com-
plex food matrices and major components include
different fatty acids, proteins (whey and casein)
minerals (calcium, magnesium, phosphate), sodium
and phospholipid components of the milk fat globule
membrane (115). Yogurt and cheese also contain
probiotics and bacterially produced bioactive pep-
tides, short-chain fatty acids, and vitamins such as
vitamin K2. The complex matrix and components of
dairy may explain why the effect of dairy food
consumption on CVD cannot be explained and pre-
dicted by its content in SFAs.

DARK  CHOCOLATE.  Dark chocolate contains stearic
acid (C18:0), which has a neutral effect on CVD risk
However, chocolate contains other nutrients that may
be more important for CVD and type 2 diabetes than
its SFA content. Experimental and observationa
studies suggest that dark chocolate has multiple
beneficial health effects, including potential anti-
oxidative, antihypertensive, anti-inflammatory
antiatherogenic, and antithrombotic properties, as
well as preventive effects against CVD and type 2
diabetes (118–120).

MEAT.  Although intake of processed meat has been
associated with increased risk of CHD, intake of un-
processed red meat is not, which indicates that the
SFA content of meat is unlikely to be responsible for
this association (121). A meta-analysis found no dif-
ferences in cardiometabolic risk factors between
groups of individuals consuming more versus fewer
than 0.5 daily servings of meat (122). Prospective
cohort studies also depict stronger associations of
processed meat consumption, compared with unpro-
cessed red meat consumption, in relation to type 2
diabetes. Another meta-analysis found that processed
meat gave rise to a 19% higher risk of type 2 diabetes
but red  meat consumption was
not significantly associated with diabetes (122). The
collective evi-
dence from randomized controlled trials  suggests
there is low- to very low-certainty evidence sup-
porting that diets restricted in red meat have a sig-
nificant effect on major cardiometabolic outcomes
(123). However, one analysis found a small but sig-
nificant association of processed meat, unprocessed
red meat, and poultry consumption with a higher risk
of incident CVD, and a mild association of processed
or unprocessed red meat with a higher risk of all-
cause mortality (124). Nevertheless, meat is a major
source of protein, bioavailable iron, minerals, and
vitamins. In modest amounts, unprocessed red meat
constitutes an important part of the diet for the
elderly and low-income populations in many devel-
oping countries (125).

RESEARCH GAPS AND DIRECTIONS

The dietary recommendation to reduce intake of SFAs
without considering specific fatty acids and food
sources is not aligned with the current evidence base.
As such, it may distract from other more effective
food-based recommendations, and may also cause a
reduction in the intake of nutrient-dense foods (e.g.,
dairy, unprocessed meat) that may help decrease not
only the risk of CVD, type 2 diabetes, and other
noncommunicable diseases, but also malnutrition,
deficiency diseases, and frailty, particularly among
“at-risk” groups. Furthermore, based on several de-
cades of experience, a focus on total SFAs has had the
unintended effect of misleadingly guiding govern-
ments, consumers, and industry toward foods low in
SFAs but rich in refined starch and sugar. All guide-
lines should consider the types of fatty acids and,
more importantly, the diverse foods containing SFAs,
which may possess harmful, neutral, or even benefi-
cial effects in relation to major health outcomes
(Central Illustration). We strongly recommend a more
food-based translation of how to achieve a healthy
diet and reconsidering the guidelines on reduction in
total SFAs. Indeed, a focus on gently processed foods
is more likely to emerge as a key factor until much
more is known about the health effects of specific
process contaminants so that their levels can be
minimized.

CONCLUSIONS

The long-standing bias against foods rich in satu-
rated fats should be replaced with a view toward
recommending diets consisting of healthy foods.
What steps could shift the bias? We suggest the
following measures: 1) enhance the public’s under-
standing that many foods (e.g., whole-fat dairy)
that play an important role in meeting dietary and



nutritional recommendations may also be rich in
saturated fats; 2) make the public aware that low-
carbohydrate diets high in saturated fat, which are
popular for managing body weight, may also
improve metabolic disease endpoints in some
individuals, but emphasize that health effects of
dietary carbohydrate—just like those of saturated
fat—depend on the amount, type and quality of
carbohydrate, food sources, degree of processing,
etc.; 3) shift focus from the current paradigm that
emphasizes the saturated fat content of foods as
key for health to one that centers on specific
traditional foods, so that nutritionists, dietitians,
and the public can easily identify healthful sources
of saturated fats; and 4) encourage committees in
charge of making macronutrient-based recommen-
dations to translate those recommendations into
appropriate, culturally sensitive dietary patterns
tailored to different populations.
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