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PRACTICE APPLICATIONS

Topics of Professional Interest
Using the Human Gastrointestinal Microbiome
to Personalize Nutrition Advice: Are Registered
Dietitian Nutritionists Ready for the
Opportunities and Challenges?
K
NOWLEDGE OF THE GASTRO-
intestinal (GI) microbiome,
including its metabolic poten-
tial, provides the opportunity

for registered dietitian nutritionists
(RDNs) to offer more personalized
nutrition advice for our clients. The GI
microbiome is the entire community of
microbes, which includes bacteria that
live within the GI tract. In GI conditions,
an opportunity may exist to reduce
symptom severity by manipulating
the bacteria present in the gut. In
metabolic conditions, individual fea-
tures of the microbiome may explain
why individuals respond differently to
standardized nutritional interventions.
The microbiome has been described

as the “forgotten organ,”with 1014 cells,
more than 10 times the total number of
human cells, and with 3.3 million
nonredundant genes.1 Nonredundant
genes all perform different biochemical
functions. So far, more than 1,000
separate species of microorganisms
have been identified within the GI
tract.2 The microbiome is dominated by
bacteria but also includes Archaea
(many of which, in the gut, aremethane
producers), fungi, and viruses.3 The
genetic potential within the micro-
biome is vast, although significant
redundancy occurs, with many bacteria
sharing a substantial number of genes,4

meaning the bacteria carry out some
similar functions. The microbiome can
be thought of as an ecosystem, with
many bacteria working in harmony,
whereby many end-metabolites from
onebacteriumcanbeused as a substrate
by another bacterium. The GI micro-
biome has largely developed a “mutu-
alistic” relationship with the host and
has genes not possessed by humans; for
instance, genes to break down fiber and
produce vitamin K.5 The microbiome
ferments substrates that humans
cannot and, in the process, produces
biologically active metabolites. For
example, the short-chain fatty acid
butyrate is commonly released when
dietary fiber is metabolized by the
microbiome. Butyrate is then used
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as an energy source for colonocytes
and plays a regulatory role affec-
ting transepithelial fluid transport,6

decreasing inflammation7 and oxida-
tive stress,8 and strengthening epithe-
lial tight junctions9 and increasing
intestinal motility.10 The GI microbiome
has a bidirectional relationshipwith the
endocrine system as it secretes and
produces hormones, including those
involved in appetite regulation, and the
microbiome is in turn affected by the
host’s endocrine system.11

Each individual has a unique micro-
biome, which will alter over his or her
lifespan. The composition and diversity
of the microbiome is affected by a vari-
ety of personal and lifestyle factors,
including diet,12,13 exercise,14 weight,
overall health status, antibiotic15 and
probiotic usage, other medications,15

geographical location,16 stress, age,16

and sex.17 However, long-term diet is
believed to be the environmental factor
with the most significant impact on the
microbiome.18 Epidemiological evi-
dence shows that African children
eating a diet high in complex carbohy-
drates had a significant enrichment
of Bacteroidetes and a depletion of
Firmicutes in comparison with Italian
children eating a Western diet. In
particular, the African children had a
greater abundance of Prevotella and
Xylanibacter, which are capable of
breaking down complex carbohy-
drates.12 In a randomized crossover
5-day dietary intervention in which
participants solely ate either animal
products or plant products, a change in
microbiome was observed.13 In the ani-
mal productebased diet, an increase in
bile acidetolerant bacteria and a
reduction in those with the ability to
break down complex carbohydrates
occurred.

Within the GI tract, the density and
the types of bacteria and other
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PRACTICE APPLICATIONS
microorganisms varies.19 In comparison,
the small intestine is less populated, and
the evidence available suggests that
small intestinal bacteria are more prom-
inently involved in carbohydrate
fermentation.20 The colon is one of the
most densely populated bacterial com-
munities on earth.4 In general, the colon
bacteria can be divided into two main
ecosystems: the luminal bacteria and
mucosa-associated bacteria. Because
they are easy to sample, the colonic
luminal bacteria are well characterized.
Luminal bacteria typically interact less
with the host immune system than do
mucosa-associated bacteria; instead,
they metabolize many compounds, such
as short-chain fatty acids, that are able to
interact with the host epithelium. They
are responsible for metabolizing many
carbohydrates and amino acids and syn-
thesizing essential vitamins used by the
host.4 Whereas colonic luminal bacteria
can be investigated in a stool sample,
investigating mucosa-associated bacte-
ria requires biopsy sampling.21 Making
characterization of these bacteria more
difficult is the fact that the preparation
before the biopsy can have negative
effects on the bacterial community pre-
sent in the colon. Themucosa-associated
bacteria, which are a much smaller pop-
ulation, directly interact with the im-
mune system.22 Further research is
warranted to determine how the
mucosalmicrobiomemight play a role in
health and disease, specifically in in-
flammatory bowel disease. Although
good evidence exists that diet affects
luminal bacteria,18 no studies have
looked at the effect of diet on mucosa-
associated bacteria. Most studies collect
fecal specimens, which are easily
obtainable, limiting the invasiveness of
the procedure.23 Glucose breath testing
could be used to identify an excess con-
centration of bacteria in the upper small
intestine. It works on the principle that
there should be no fermentation of
glucose, because it is absorbed in the
upper small intestine before it comes in
contact with large numbers of bacteria.
However, this test is unable to identify
the type of bacteria present.
Manipulating the microbiome to

improve health status is becoming
increasingly common. Three potential
targets are replenishing beneficial
microbes, increasing bacterial diversity,
and reducing harmful microbes.15

The potential for fecal microbial
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transplantation to treat clinical condi-
tions is no longer confined to treating
Clostridium difficile.24 Research is also
being undertaken for its role in ulcer-
ative colitis, nonealcohol-induced fatty
liver disease, and irritable bowel syn-
drome.24 Probiotics, as either individ-
ual formulations or multispecies
preparations or added to food, are
widely consumed to gain the benefits
from these beneficial bacteria.25
STUDYING THE MICROBIOME
Although culturing techniques were
used in the past primarily to investi-
gate the intestinal microbiome, most
studies of its composition and diversity
are now being done by using next-
generation sequencing techniques that
look at the bacterial DNA present in
samples.26 This type of analysis iden-
tifies which bacteria are present.
However, simply identifying the bac-
teria present may not necessarily tell
us what is happening in the GI tract.
Other approaches, such as meta-
genomics, transcriptomics, proteomics,
and metabolomics (collectively termed
“omics”), can provide more informa-
tion on what the bacteria are doing.27

Metagenomic analysis aims to deter-
mine all gene sequences that are pre-
sent in a sample. Transcriptomic
evaluation attempts to characterize
what (bacterial or eukaryotic) RNA is
being expressed. Proteomic analysis
looks at the proteins produced by the
microbiome. Metabolomic studies
determine what metabolites were
produced as a result of cellular meta-
bolism with urinary samples being
collected. These samples are analyzed
by using liquid chromatography/mass
spectrometry, gas chromatography/
mass spectrometry, or nuclear mag-
netic resonance. Although collecting all
of this information would be ideal,
because of the high cost and technical
challenges associated with these
approaches, undertaking them is not
always practical.
A high cost is associated with next-

generation sequencing analyses, but
on a per sample basis, it is relatively
affordable if conducted at an appro-
priate scale. These sequencing plat-
forms, which were once only available
at specialized sites, are now more
accessible than ever before, and sam-
ples can be sent to service providers.
TION AND DIETETICS
Microbiome data may become avail-
able to incorporate into clinical practice
in the near future.

Four studies highlight the opportu-
nities to personalize nutrition based on
the microbiome.23,28-30 A pilot study
published by Chumpitazi and col-
leagues29 showed that the types of
bacteria and their gene content in the
colon could predict which children
respond to a low fermentable oligo-
saccharide, disaccharide, mono-
saccharide, and polyol (FODMAP) diet.
McIntosh and colleagues30 found that a
low-FODMAP diet reduced the hista-
mine produced by the microbiome,
which also may contribute to the
reduction in pain experienced by irri-
table bowel syndrome (IBS) patients.
Zeevi and colleagues,23 in an 800-per-
son cohort, set out to see whether
features of the colonic bacteria could
be incorporated into an algorithm for
predicting postprandial blood glucose
levels. The latter study in particular has
significant ramifications for dietetic
practice.

The algorithm developed by Zeevi
and colleagues23 to predict blood
glucose levels incorporated traditional
clinical measures used in diabetes
management such as glycated hemo-
globin and body mass index, as well as
the types of bacteria found in the colon
and the genes encoded by these bac-
teria. Using this algorithm, the authors
were able to develop a model that
could predict postprandial blood
glucose levels after food intake with
greater accuracy than by using carbo-
hydrate counting. They found a vari-
able postprandial response to different
foods; for example, chicken liver
caused a spike in blood glucose levels
for some participants, whereas a much
smaller increase in blood glucose levels
was seen for other participants. In part,
this was related to different responses
to fat. Given the important role that GI
bacteria play in fermenting complex
carbohydrates and in metabolizing bile
acids,31 colonic bacteria present may
influence blood glucose levels. Some of
the features of the microbiome that
affected postprandial blood glucose
levels had already been identified,
such as the association between Bac-
teroides thetaiotaomicron and obesity.32

B. thetaiotaomicron uses starch and is
able to degrade plant polysaccharides
that humans are not able to break
December 2017 Volume 117 Number 12
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down.33 The effect of features of the
microbiome may help to explain why
different researchers and professionals
can find evidence to support very
different dietary patterns for the man-
agement of blood glucose levels.34-37

Irritablebowel syndrome is the second
clinical area in which the microbiome
has been shown to have the potential to
predict response to dietary treat-
ments.28,29 The low-FODMAP diet
restricts fermentable short-chain
carbohydrates and has been shown to
be effective in reducing symptom
severity in 70% to 75% of adults.30,38-41

Restricting FODMAP molecules reduces
bacterial fermentation and the produc-
tion of gas, which leads to luminal
distension, causing pain in patients with
visceral hypersensitivity.42 However,
predicting which patients will experi-
ence a reduction in pain, bloating, and
either constipation or diarrhea has been
difficult when following a low-FODMAP
diet. A study of 33 children randomized
in a crossover fashion to either a low-
FODMAP diet or a typical American diet
found that those children with more
bacterial genes capable of breaking
down carbohydrates at baseline were
more likely to have a reduction in
symptoms when following a low-
FODMAP diet. This study measured the
diversity and composition of the bacte-
rial community; the presence of certain
bacterial genes was predicted by using
reference genomes.29 Further research
is required to see whether these
findings of bacterial genes predicting
dietary response can be replicated.
McIntosh and colleagues investigated
the effect of a high- vs low-FODMAP
diet on symptom severity, the micro-
biome, and the metabolites it produces.
After following a low-FODMAP diet
for 1 month, no reduction in the
diversity of the microbiome was seen,
despite a decreased intake of prebiotic
fructo-oligosaccharides and galacto-
oligosaccharides. Because most partici-
pants in this study had diarrhea
predominant IBS, any reduction in
diversity caused by a reduction in pre-
biotics may have been offset by the
beneficial effectondiversitycausedbyan
increase in gastrointestinal transit
time.43 In the low-FODMAP diet, urinary
histamine levelswere either reduced ina
small number of participants or
remained constant. Histamine is a short-
acting amine with an effect on cells of
both the innate and adaptive immune
December 2017 Volume 117 Number 12
system.44 The reduction in urinary his-
tamine could be attributable to less
distension, subsequently causing
decreased mast cell degranulation45 or
the effect of biologically active metabo-
lites on mast cells. In animal models,
bacterial metabolites such as ethanol
have been shown to induce histamine
release.46,47 These findings need to be
replicated.
PRACTICAL APPLICATIONS
Understanding the role that diet plays
in shaping the microbiome provides
more evidence that RDNs could use to
help patients make healthy choices.
The effect of fiber on increasing the
diversity of the microbiome is another
reason to encourage patients to not
only increase their fiber intake but also
to eat a wide variety of fiber sources.
The fermentation of fiber by the
microbiome involves many different
biochemical reactions, with different
bacteria having the ability to perform
different steps. Incorporating a wider
range of fiber sources provides a
greater range of substrates for the
microbiome, giving the opportunity for
a wider range of bacteria to become
established in the gastrointestinal tract.
RDNs also could encourage the con-
sumption of more fermented foods.48

Utilization of the microbiome in
specific clinical situations has the po-
tential to improve clinical outcomes
not only in IBS, but also in diabetes
management, cardiovascular disease,
obesity, and potentially nonalcoholic
fatty liver disease (NAFLD). A study by
Zeevi and colleagues23 suggests that
metabolic or endocrine disorders may
be a potential target for using the GI
microbiome to personalize dietary in-
terventions. NAFLD is the perceived
‘next epidemic’ of clinical concern,
with an increasing number of patients
suffering from this disorder. The
microbiome of obese patients has
lower diversity and has a decreased
Bacteroidetes/Firmicutes ratio compared
with lean individuals.49 As yet, a
distinct microbiome for NAFLD
patients has not been identified. How-
ever, in a pediatric population with
nonealcohol-induced steatohepatitis,
increased levels of Escherichia coli were
present, which can endogenously pro-
duce alcohol. These patients had
elevated serum alcohol levels despite
no alcohol intake.50 Patients diagnosed
JOURNAL OF THE ACADE
with NAFLD also have an increased risk
of developing cardiovascular compli-
cations.51 Nutrition researchers and
health professionals have struggled to
identify suitable dietary interventions
in this area. Although weight loss for
NAFLD has been established as an
effective treatment, the ideal macro-
nutrient distribution has not been
defined. Dietary intervention in NAFLD
is one area that could particularly
benefit from personalizing nutrition
through incorporating features of the
microbiome into its assessment. Bac-
terial metabolites produced by the GI
microbiome are drained through the
portal vein.52 Thus, the liver is uniquely
exposed to products of microbial
metabolism. Altering the substrates
used by the bacteria in the gut may
alter the metabolites produced and
may help to reduce liver damage. Zeevi
and colleagues23 found a clear negative
association between liver alanine
aminotransferase levels and some
bacteria. Those individuals with less
Alistipes finegoldii and Bacteroides
xylanisolvens had increased alanine
aminotransferase levels.23 A. finegoldii
has saccharolytic pathways breaking
down sugars and produces succinic
and acetic as end products.2

To incorporate findings from the GI
microbiome into clinical practice will
require RDNs to understand the
microbiological findings that are
being generated by specific patient
cohorts through microbiome analysis.
Although an increased knowledge and
understanding of microbiology and
biochemistry may be beneficial, RDNs
will need to focus on relating this back
to foods and dietary patterns
consumed by individuals and pop-
ulations to best translate this new tool
into improved clinical outcomes.
Therefore, not only will the RDN’s
knowledge of food composition be
important, but so also will be recipe
development to assist patients in being
able to follow a personalized nutrition
regimen.
RESEARCH IMPLICATIONS FOR
RDNs
Future dietary and microbiological
research will require a dynamic multi-
disciplinary approach from project
inception. Even overlooked details,
such as collection and storage of fecal
specimens, may have effects on the
MY OF NUTRITION AND DIETETICS 1867
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quality of the data down the line.
Newly established protocols in this
area are improving sample quality
while reducing participant burden.
Research studying the impact of diet on
the microbiome and vice versa has
been conducted in the field of micro-
biology, which is generally unknown to
dietitians. Much of this work is highly
relevant. For example, many mecha-
nistic studies on the effect of adding
dietary components to in vitro models
of the colon and how this changes the
abundance of different bacteria at this
location.53 Stable isotopes also have
been used to show how different di-
etary components can be used by
different bacteria in the gut, which may
be of great benefit in dietary
research.54 Including laboratory-based
studies that complement clinical
studies will maximize the knowledge
gained from each individual study
because this may explain the clinical
findings.
The RDN’s role in collaborations

investigating the microbiome will be to
design dietary interventions, provide
the dietary education to patients,
ensure food composition data are
available for the nutrient of interest,
and measure dietary intake and
adherence to the interventions. This
reinforces the need for continued
technological development in dietary
assessment methods to improve accu-
racy while reducing participant
burden.55 RDNs will be required to
select and develop appropriate tools
for nutrition assessment to calculate
the nutrient(s) of greatest interest.
Advances in the understanding of the

microbiome offer the opportunity for
enhancing our clinical dietetic interven-
tion by incorporating data from the
microbiome. RDNs need to gain some
understanding of themetabolic potential
of the microbiome so they can incorpo-
rate this into their clinical practice.
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